
Local instructor-led live Hadoop training courses in Беларусь.
Hadoop Subcategories
Hadoop Course Outlines
Course Name
Duration
Overview
Course Name
Duration
Overview
21 hours
Афарызм (гр. aphorismos - выказванне) - выслоўе, у якім у трапнай, лаканічнай форме выказана значная і арыгінальная думка. Spark з'яўляецца матарам для працэдуры дадзеных, які выкарыстоўваецца ў пошуку, аналізе і трансформацыі вялікіх дадзеных, у той час як Hadoop з'яўляецца праграмнае забеспячэнне бібліятэкі для захавання і працэдуры дадзеных на вялікім узроўні.
Гэта інструктар-праведзены, жывы трэнінг (онлайн або на сайце) звязаны з развіццём, які хоча выкарыстоўваць і інтэграваць Spark, Hadoop, і Python для працэсу, аналізу і трансформацыі вялікіх і складаных набораў дадзеных.
У канцы гэтага трэніру ўдзельнікі зможаць:
-
Стварыце неабходнае месца для пачатку працэдуры вялікіх дадзеных з Spark, Hadoop, і Python.
Узнагароджанне функцый, асноўных элементаў і архітэктуры Спарка і Hadoop.
Узнайце, як інтэграваць Spark, Hadoop, і Python для працэдуры вялікіх дадзеных.
Вызначыце інструменты ў экасистеме Spark (Spark MlLib, Spark Streaming, Kafka, Sqoop, Kafka, і Flume).
Стварыце спіратыўныя фільтрацыйныя рэкамендацыйныя сістэмы, такія як Netflix, YouTube, Amazon, Spotify і Google.
Выкарыстоўвайце Apache Mahout для скалявання алгоритмаў машынабудавання.
-
Інтэрактыўныя лекцыі і дискусіі.
Многія практыкаванні і практыкаванні.
Вынікі ў Live-Lab Environment.
-
Калі вы хочаце падзяліцца сваёй думкай з майстрам, рабіце гэта максімальна ветліва.
7 hours
This course covers how to use Hive SQL language (AKA: Hive HQL, SQL on Hive, HiveQL) for people who extract data from Hive
14 hours
Datameer is a business intelligence and analytics platform built on Hadoop. It allows end-users to access, explore and correlate large-scale, structured, semi-structured and unstructured data in an easy-to-use fashion.
In this instructor-led, live training, participants will learn how to use Datameer to overcome Hadoop's steep learning curve as they step through the setup and analysis of a series of big data sources.
By the end of this training, participants will be able to:
- Create, curate, and interactively explore an enterprise data lake
- Access business intelligence data warehouses, transactional databases and other analytic stores
- Use a spreadsheet user-interface to design end-to-end data processing pipelines
- Access pre-built functions to explore complex data relationships
- Use drag-and-drop wizards to visualize data and create dashboards
- Use tables, charts, graphs, and maps to analyze query results
- Data analysts
- Part lecture, part discussion, exercises and heavy hands-on practice
21 hours
The course is dedicated to IT specialists that are looking for a solution to store and process large data sets in distributed system environment
Course goal:
Getting knowledge regarding Hadoop cluster administration
35 hours
Audience:
The course is intended for IT specialists looking for a solution to store and process large data sets in a distributed system environment
Goal:
Deep knowledge on Hadoop cluster administration.
28 hours
Audience:
This course is intended to demystify big data/hadoop technology and to show it is not difficult to understand.
28 hours
Apache Hadoop is the most popular framework for processing Big Data on clusters of servers. This course will introduce a developer to various components (HDFS, MapReduce, Pig, Hive and HBase) Hadoop ecosystem.
21 hours
Apache Hadoop is one of the most popular frameworks for processing Big Data on clusters of servers. This course delves into data management in HDFS, advanced Pig, Hive, and HBase. These advanced programming techniques will be beneficial to experienced Hadoop developers.
Audience: developers
Duration: three days
Format: lectures (50%) and hands-on labs (50%).
21 hours
This course introduces HBase – a NoSQL store on top of Hadoop. The course is intended for developers who will be using HBase to develop applications, and administrators who will manage HBase clusters.
We will walk a developer through HBase architecture and data modelling and application development on HBase. It will also discuss using MapReduce with HBase, and some administration topics, related to performance optimization. The course is very hands-on with lots of lab exercises.
Duration : 3 days Audience : Developers & Administrators
Duration : 3 days Audience : Developers & Administrators
21 hours
Apache Hadoop is the most popular framework for processing Big Data on clusters of servers. In this three (optionally, four) days course, attendees will learn about the business benefits and use cases for Hadoop and its ecosystem, how to plan cluster deployment and growth, how to install, maintain, monitor, troubleshoot and optimize Hadoop. They will also practice cluster bulk data load, get familiar with various Hadoop distributions, and practice installing and managing Hadoop ecosystem tools. The course finishes off with discussion of securing cluster with Kerberos.
“…The materials were very well prepared and covered thoroughly. The Lab was very helpful and well organized”
— Andrew Nguyen, Principal Integration DW Engineer, Microsoft Online Advertising Audience Hadoop administrators Format Lectures and hands-on labs, approximate balance 60% lectures, 40% labs.
— Andrew Nguyen, Principal Integration DW Engineer, Microsoft Online Advertising Audience Hadoop administrators Format Lectures and hands-on labs, approximate balance 60% lectures, 40% labs.
21 hours
Apache Hadoop is the most popular framework for processing Big Data. Hadoop provides rich and deep analytics capability, and it is making in-roads in to tradional BI analytics world. This course will introduce an analyst to the core components of Hadoop eco system and its analytics
Audience
Business Analysts
Duration
three days
Format
Lectures and hands on labs.
21 hours
Hadoop is the most popular Big Data processing framework.
14 hours
Audience
- Developers
- Lectures, hands-on practice, small tests along the way to gauge understanding
21 hours
This course is intended for developers, architects, data scientists or any profile that requires access to data either intensively or on a regular basis. The major focus of the course is data manipulation and transformation. Among the tools in the Hadoop ecosystem this course includes the use of Pig and Hive both of which are heavily used for data transformation and manipulation. This training also addresses performance metrics and performance optimisation. The course is entirely hands on and is punctuated by presentations of the theoretical aspects.
14 hours
In this instructor-led training in Беларусь, participants will learn the core components of the Hadoop ecosystem and how these technologies can be used to solve large-scale problems. By learning these foundations, participants will improve their ability to communicate with the developers and implementers of these systems as well as the data scientists and analysts that many IT projects involve.
Audience
- Project Managers wishing to implement Hadoop into their existing development or IT infrastructure
- Project Managers needing to communicate with cross-functional teams that include big data engineers, data scientists and business analysts
14 hours
Apache Samza is an open-source near-realtime, asynchronous computational framework for stream processing. It uses Apache Kafka for messaging, and Apache Hadoop YARN for fault tolerance, processor isolation, security, and resource management.
This instructor-led, live training introduces the principles behind messaging systems and distributed stream processing, while walking participants through the creation of a sample Samza-based project and job execution.
By the end of this training, participants will be able to:
- Use Samza to simplify the code needed to produce and consume messages.
- Decouple the handling of messages from an application.
- Use Samza to implement near-realtime asynchronous computation.
- Use stream processing to provide a higher level of abstraction over messaging systems.
- Developers
- Part lecture, part discussion, exercises and heavy hands-on practice
7 hours
Сярод версій гульняў онлайн call of duty можна знайсці мноства займальных і дасціпных сюжэтаў, а апошняй навінкай, выпушчанай у канцы восені гэтага года, стала гульня Call of duty. Ён выкарыстоўваецца такімі кампаніямі як Intel, Baidu і Alibaba.
У гэтым інструктар-праведзены, жывы трэнінг, удзельнікі навучаюцца, як выкарыстоўваць Alluxio для пабудавання розных калькуляцыйных рамок з сістэмамі захавання і эфектыўна кіраваць мульты-петабайт-скале дадзеных, як яны праходзяць па стварэнні праграмы з Alluxio.
У канцы гэтага трэніру ўдзельнікі зможаць:
-
Вырабіць заяўку з Alluxio
Заявы і абмоўкі пра абмежаванне адказнасці
Эканоміка стала набываць выразна затратны характар і патра-бавала кардынальных рэформ.
Выкарыстоўвайце работную нагрузку
Загрузіць і кіраваць Alluxio адзіным або кластраваным
-
дадзеных навукоўцы
Распрацоўнік
Адміністрацыя сістэмы
-
Частныя лекцыі, частковая дискусія, практыкаванні і цяжкія практыкаванні
14 hours
Tigon is an open-source, real-time, low-latency, high-throughput, native YARN, stream processing framework that sits on top of HDFS and HBase for persistence. Tigon applications address use cases such as network intrusion detection and analytics, social media market analysis, location analytics, and real-time recommendations to users.
This instructor-led, live training introduces Tigon's approach to blending real-time and batch processing as it walks participants through the creation a sample application.
By the end of this training, participants will be able to:
- Create powerful, stream processing applications for handling large volumes of data
- Process stream sources such as Twitter and Webserver Logs
- Use Tigon for rapid joining, filtering, and aggregating of streams
- Developers
- Part lecture, part discussion, exercises and heavy hands-on practice
21 hours
In this instructor-led, live training in Беларусь (onsite or remote), participants will learn how to deploy and manage Apache NiFi in a live lab environment.
By the end of this training, participants will be able to:
- Install and configure Apachi NiFi.
- Source, transform and manage data from disparate, distributed data sources, including databases and big data lakes.
- Automate dataflows.
- Enable streaming analytics.
- Apply various approaches for data ingestion.
- Transform Big Data and into business insights.
7 hours
In this instructor-led, live training in Беларусь, participants will learn the fundamentals of flow-based programming as they develop a number of demo extensions, components and processors using Apache NiFi.
By the end of this training, participants will be able to:
- Understand NiFi's architecture and dataflow concepts.
- Develop extensions using NiFi and third-party APIs.
- Custom develop their own Apache Nifi processor.
- Ingest and process real-time data from disparate and uncommon file formats and data sources.
28 hours
Hadoop з'яўляецца папулярнай Big Data працэсавай кармавай. ^ а б Вячорка В. Пад чым гетман Астроскі перамог 80000 маскавітаў?* // Радыё Свабода, 7 верасьня 2017 г.
У гэтым інструктар-праведзены, жывы трэнінг, удзельнікі навучаюцца, як працаваць з Hadoop, MapReduce, Pig, і Spark выкарыстоўваць Python, як яны праходзяць па многіх прыкладах і выкарыстоўваць выпадкі.
У канцы гэтага трэніру ўдзельнікі зможаць:
-
Разумець асноўныя концепцыі за Hadoop, MapReduce, Pig, і Spark
Выкарыстоўвайце Python з Hadoop Distributed File System (HDFS), MapReduce, Pig, і Spark
Выкарыстоўвайце Snakebite для праграмнае забеспячэнне HDFS ў межах Python
Выкарыстоўвайце mrjob, каб напісаць MapReduce працы ў Python
Напішыце праграмы Spark з Python
Вышыня функцыянальнасці свиней з дапамогай Python УДФ
Менаджэнне MapReduce працы і Скрипты Птушкі з дапамогай Luigi
-
Распрацоўнікі
Прафесіоналы
-
Частныя лекцыі, частковая дискусія, практыкаванні і цяжкія практыкаванні
14 hours
Sqoop is an open source software tool for transfering data between Hadoop and relational databases or mainframes. It can be used to import data from a relational database management system (RDBMS) such as MySQL or Oracle or a mainframe into the Hadoop Distributed File System (HDFS). Thereafter, the data can be transformed in Hadoop MapReduce, and then re-exported back into an RDBMS.
In this instructor-led, live training, participants will learn how to use Sqoop to import data from a traditional relational database to Hadoop storage such HDFS or Hive and vice versa.
By the end of this training, participants will be able to:
- Install and configure Sqoop
- Import data from MySQL to HDFS and Hive
- Import data from HDFS and Hive to MySQL
- System administrators
- Data engineers
- Part lecture, part discussion, exercises and heavy hands-on practice
- To request a customized training for this course, please contact us to arrange.
21 hours
Big data analytics involves the process of examining large amounts of varied data sets in order to uncover correlations, hidden patterns, and other useful insights.
The health industry has massive amounts of complex heterogeneous medical and clinical data. Applying big data analytics on health data presents huge potential in deriving insights for improving delivery of healthcare. However, the enormity of these datasets poses great challenges in analyses and practical applications to a clinical environment.
In this instructor-led, live training (remote), participants will learn how to perform big data analytics in health as they step through a series of hands-on live-lab exercises.
By the end of this training, participants will be able to:
- Install and configure big data analytics tools such as Hadoop MapReduce and Spark
- Understand the characteristics of medical data
- Apply big data techniques to deal with medical data
- Study big data systems and algorithms in the context of health applications
- Developers
- Data Scientists
- Part lecture, part discussion, exercises and heavy hands-on practice.
- To request a customized training for this course, please contact us to arrange.
35 hours
Apache Hadoop з'яўляецца папулярнай дадзеных працэдуры рамкі для працэдуры вялікіх дадзеных на многіх кампутарах.
Гэта інструктар-праведзены, жывы трэнінг (онлайн або на сайце) звязаны з адміністратарамі сістэмы, якія хочуць ведаць, як ўсталяваць, распаўсюджваць і ажыццяўляць Hadoop кластеры ў межах сваёй арганізацыі.
У канцы гэтага трэніру ўдзельнікі зможаць:
-
Загрузіць і ўсталяваць Apache Hadoop.
Зразумець чатырох асноўных элементаў Hadoop экасистемы: HDFS, MapReduce, YARN, і Hadoop Common.
Кожны шлях - гэта толькі некаторыя з найбольш складаных ставак.
Загрузіць HDFS, каб працаваць як запас-мотар для наперасных Spark дэплойментаў.
Сцягнуць Spark для даступу да альтэрнатыўных рэжысёраў, такіх як Amazon S3 і NoSQL сістэмы дадзеных, такіх як Redis, Elasticsearch, Couchbase, Aerospike, і інш.
Выконваць адміністрацыйныя задачы, такія як прадастаўленне, кіраванне, нагляд і абарона кластра Apache Hadoop.
-
Інтэрактыўныя лекцыі і дискусіі.
Многія практыкаванні і практыкаванні.
Вынікі ў Live-Lab Environment.
-
Калі вы хочаце падзяліцца сваёй думкай з майстрам, рабіце гэта максімальна ветліва.
21 hours
Cloudera Impala з'яўляецца адкрытым кодам масіўнага паралельнага працэдуры (MPP) SQL запрашэнні для Apache Hadoop кластераў.
Impala дазволіць карыстальнікам выпусціць дадзеныя, якія змяшчаюцца ў Hadoop Distributed File System і Apache Hbase без патрабаванняў на рух дадзеных або трансформацыі.
Адукацыя
Гэта курс накіраваны на аналітыкаў і дадзеных навукоўцаў, якія праводзяць аналіз на дадзеныя, захаваныя ў Hadoop па дапамозеBusiness Intelligence або SQL інструментаў.
У будучыні гэта можа стаць выдатным і паспяховым бізнесам.
-
Здаровая касметыка вы можаце зрабіць самі
Напішыце спецыяльныя праграмы для лёгкага ўплыву Business Intelligence у Impala SQL Dialect.
Уваход у прафесію Impala.
21 hours
Apache Ambari is an open-source management platform for provisioning, managing, monitoring and securing Apache Hadoop clusters.
In this instructor-led live training participants will learn the management tools and practices provided by Ambari to successfully manage Hadoop clusters.
By the end of this training, participants will be able to:
- Set up a live Big Data cluster using Ambari
- Apply Ambari's advanced features and functionalities to various use cases
- Seamlessly add and remove nodes as needed
- Improve a Hadoop cluster's performance through tuning and tweaking
- DevOps
- System Administrators
- DBAs
- Hadoop testing professionals
- Part lecture, part discussion, exercises and heavy hands-on practice
21 hours
This instructor-led, live training in Беларусь (online or onsite) introduces Hortonworks Data Platform (HDP) and walks participants through the deployment of Spark + Hadoop solution.
By the end of this training, participants will be able to:
- Use Hortonworks to reliably run Hadoop at a large scale.
- Unify Hadoop's security, governance, and operations capabilities with Spark's agile analytic workflows.
- Use Hortonworks to investigate, validate, certify and support each of the components in a Spark project.
- Process different types of data, including structured, unstructured, in-motion, and at-rest.
Last Updated:
Other countries
Consulting
Online Hadoop courses, Weekend Hadoop courses, Evening Hadoop training, Hadoop boot camp, Hadoop instructor-led, Weekend Hadoop training, Evening Hadoop courses, Hadoop coaching, Hadoop instructor, Hadoop trainer, Hadoop training courses, Hadoop classes, Hadoop on-site, Hadoop private courses, Hadoop one on one training